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Abstract. Using a path integral approach and also considerations about the time-dependent harmonic
oscillator, we compute the spectral determinant of the operator (—A + V(z)) on a graph. (A is the
Laplacian and V() is some potential defined on the graph). We recover a recent result that was obtained
by constructing the Green’s function on the graph. We also extend those considerations to the case when
i) a magnetic field is added to the system, ii) the potential, V'(x), contains repulsive ¢ peaks.

PACS. 02.70.-c Computational techniques — 03.65.-w Quantum mechanics — 11.10.-z Field theory

Spectral properties of the Laplacian operator on
graphs have been investigated in several different contexts
by physicists — let us simply mention superconducting net-
works [1], vibrational properties of fractal structures [2],
weakly disordered systems [3,4], quantum chaos [5] — as
well as by mathematicians [6]. During last year [4], a com-
pact form for the determinant of the operator (—A + 7)
has been obtained (v is a constant). More recently [7],
this result has been generalized to the operator (H + ),
with H = —A4 V(x). V(z) is some potential defined in
each point x of the graph. Both approaches relied on the
construction of the Green’s function on the graph. In this
letter, we propose to recover this last result [7] by using a
quite different way based on Path Integrals [8] and Time-
Dependent Harmonic Oscillator (TDHO) properties [9].

To introduce those results, we consider a graph G made
of V vertices linked by B bonds. Let us define, on each
bond (af), of length l,g, the coordinate z,g that runs
from 0 (vertex «) to lag (vertex ). (Conversely, x5, =
log — xap.) To avoid cumbersome notations, ¢ being some
function defined on the graph, we will simply write, when

it is not ambiguous, ¢(a) for ¢(xap=0) and ff ¢ for

folaﬁ P(zap)dzags.

The spectrum of H is determined by imposing conti-
nuity of the eigenfunctions ¢ and current conservation at
each vertex a, namely:
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(the summation is taken over the m, nearest vertices
of a).

In the sequel, we will consider, for each bond, two
independent solutions, 1,3 and g4, of the equation

(H+7)¢=0. (2)
Those functions are chosen to satisfy:
Yap(a) =15 ap(B) =0 3)
wﬁa(oo = 0; wﬁa(ﬁ) =1 (4)
with the wronskian:
_ . dipa dYas _ diga
Waﬁ - waﬁ dxaﬁ B wﬁa dl‘ag B dxaﬁ (a)
_ 7dwa,3 _ dwa,@
= 2(8) = 522 6). 5)

Let us first recall the result of [4]. The authors established
that:

det(~A+7) =~ = ] sinh(v/(7)lag) det(M°) (6)

(aB)

where M is a (V x V) matrix with the elements:
Ma

MO, = 3" coth(y/Flus,) ")

i=1 1
0o _ . .
Mys = 7Sinh(\/§la5) if (af3) is a bond

=0 otherwise (8)

(the summation is taken over the m, nearest vertices
of a).
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In fact, the authors also considered the case when a
magnetic field is added to the system. This point will be
discussed at the end of the paper.

In [7], we showed that:

det(H +v) = det(—-A + V(x)+7)
H T det(M)

(D‘B) dza[i( )
with the (V' x V) matrix M:

(9)

dwaﬁ
: 1
jij Ty (10)
Moy = My = dfﬁ; (@) = Wag if (a) is a bond

(11)

=0 otherwise

(all the % functions appearing in (9-11) satisfy (2-4)).
When V(z) =0, (9-11) narrow down to (6-8). (This is
actually true, up to an irrelevant multiplicative constant).
(9), like (6), was established by computing the Green’s
function G(z,y) on the graph and using the relationship:
/ G(z,z)dz = 0, Indet(H + 7). (12)

Graph

In the present work, we will follow quite another way
essentially based on a path integral formulation [8] of

the spectral determinant S(v). In this formalism, S(vy)~!
writes:

S(y) t=det(H+~)! =/ D(;ﬁD(ﬁe*% Jatapn O(F1®
¢ on graph
(13)

where ¢ is a complex field defined on the graph G. The
path integral is performed over all the fields satisfying
the boundary conditions (1). General properties of path
integrals lead to (d, = <):

T = dz
S'=[ [ d¢adéa
vertices o
$(lag)=b .
« T DEDE ek s A B (Y (@h)o@)
bonds d)(o):d)a
(aB)

(14)

where d¢d$ = dRe ¢ dIm ¢. This involves, after an inte-
gration by parts, the following quantity

¢ -
H ﬁDd)Déf_) 5éds e_%folaﬁ da (|d2 ¢+ (V (z)+7)|¢]?)
(aB)
1L e
= exp (75 Z Z Tap; ¢(33aﬁ1 = 0)) H
ot (aB)
o] 3 L rlas , )
x DpDp e~ o™ dw (A= +(V(@+nIe*)  (15)
$a
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With equation (1), the boundary terms vanish and we
are left with a product of propagators of two-dimensional
Time-Dependent Harmonic Oscillators. On the bond
(ozﬁ) the coordinate xag is the “time” and the frequency

is w(zag) = \/V(xap) + 7. Let us recall the expression of

this propagator in standard notations [9]:

K (ry,ty;Ta;ta) / Dr(r)e™ % fid GO +(n*r)dr(16)

= % exp ( (AT + BT;, +2Cr, - rb))
(17)

with ( S(ta), $a = Ss(t =ta),...)
A= z—a + fa coth(f, — fv) (18)
B = —z—z + fb COth(fa — fb) (19)
fafb

1277 7 20

sinh?(fa — f») (20)

The functions s(t) and f(t) obey the differential equations:

2

.. & 2
s—i-?—w(t)s:o (21)

fs?=c (22)

where ¢ is an arbitrary (nonzero) constant. From the above
equations, it is easy to show that the functions ¥y (t) =
s(t)etf ) are two independent solutions of the equation:

b - w(tyy =0, (23)

Introducing two other solutions 1 o of (23) that satisfy
the conditions:

Ui(ta) = 1;
Va(ta) = 0;

¥1(ts)
Ya(ts)

0 (24)
1

and expressing 1 o in terms of ¥+, we get for the con-
stants A, B, C in (17) the following simple form:

A=1(ta) (26)
B = —iy(ty) (27)
C = 1y(ta) = =11 (ty). (28)

Moreover, it can be established (for instance, step by step;
the proof is not difficult but rather lengthy) that, if w(t)
is real, 11 (t) (¥2(t)) are monotonic deceasing (increasing)
functions for t, < t < t; and also that 1/}2(ta)1/}1 (ty) —

U1 (ta)t2(ty) > 0.

Now, it is a simple matter to come back to our
computation of S(v). Considering for each bond (a/3)
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the functions 1,s and g, defined in equations (2-4), we
can express (15) as:

dvga -
IT o S22(@) exp 337 6aMapés | (29)
a,B

27 da
(ap) <7 HHab

with the matrix M defined in (10, 11). Finally, Gaussian
integration leads to (9) — up to an inessential normaliza-
tion constant.

Adding a magnetic field [4,8], we must replace all the
derivatives appearing in the Laplacian and also in the cur-
rent conservation condition (1) by covariant derivatives
D, = d, — iA(xz) (A(z) is the vector potential). For in-
stance, (1) becomes

Mo

Z Dmaﬁi @(xaﬁi = 0) =0
i=1

(30)

Computing the spectral determinant along the same
lines (13 -15) as before we get, for (15), a product of terms
of the form
2 - _1(8 2 2
D¢Dp e~ 2 J& (Dbl +(V(@)+7)lol) (31)
Pa

(in the integration by parts, the boundary terms still van-

ish because of (30)). For each bond («f) one may recover

the propagator of a TDHO by performing the following
gauge transformation

~ i Al

o) = ga)e fo 4 (32)

where the integral is performed along (o) and ¢ is an
arbitrary point on this bond.

Let us define
B
S

(030 = —b0ap) and choose x( such that

/j Alz) = _/: Az) = %ega.

Then, (31) becomes

(33)

ppe 080 /2
~/¢aei9“5/2

Considering the bounds of this integral, the quantity
daMapdp appearing in (29) must be changed into

DGDG e 3 J2 (4P +(V (@) +1)I6P).

(EaeJrieag/Q Maﬁ (Zsﬁefieﬁa/Q. (34)
The final result is that (9) still holds provided the off-
diagonal elements of the matrix M in (11) are slightly
modified:

+i0aps

Maﬁ e Mage (35)
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Such a modification for the matrix M° was already ob-
tained in [4].

Let us now study what happens when we replace cur-
rent conservation (1) by generalized boundary conditions

deam‘ﬁ(xa&z =0) = \ap(a).

(36)

i=1
The boundary contribution in (15) will not
vanish but rather produce an additional term

exp(— Z(‘::l Aa|®al?/2). Thus, (9) is still correct if, this
time, we change the diagonal elements (10) of M:
Moo — Moo — M. (37)
Finally, let us discuss the case when the potential con-
tains repulsive § peaks. In fact, it is enough to consider
only one such peak located at some point ¢ on the link
(ab): V(z) = Vi(x) + Ad(z — ¢) where Vi(z) is regular
(H = Hi+X:6(x—c)). The generalization to several peaks
is straightforward.
The path integral for the bond (ab) becomes:

o .
D$pDg e 2 S, d(H+)9
¢(l
o - _1pb7 1ob 7
— D¢pDgp e 2 Jo ¢H1+7)¢ o= 3 [, Aed(z—c)d
[0

- / dd)cdd_)ce_ 3helel”

(38)

be -
D‘i)Dd_) e—% JEo(H147)d
¢0/
P .
x D¢Dp e~ 2 o AU+
¢e

(39)

We conclude that we must compute the spectral de-
terminant on the new graph consisting in (V' + 1) vertices
(including ¢) and (B + 1) bonds ((ab) is replaced by (ac)
and (cb)). Moreover, in ¢, we have to consider generalized
boundary conditions.

I acknowledge Pr A. Comtet and Dr C. Texier for discussions.
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