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Abstract. Using a path integral approach and also considerations about the time-dependent harmonic
oscillator, we compute the spectral determinant of the operator (−∆ + V (x)) on a graph. (∆ is the
Laplacian and V (x) is some potential defined on the graph). We recover a recent result that was obtained
by constructing the Green’s function on the graph. We also extend those considerations to the case when
i) a magnetic field is added to the system, ii) the potential, V (x), contains repulsive δ peaks.

PACS. 02.70.-c Computational techniques – 03.65.-w Quantum mechanics – 11.10.-z Field theory

Spectral properties of the Laplacian operator on
graphs have been investigated in several different contexts
by physicists – let us simply mention superconducting net-
works [1], vibrational properties of fractal structures [2],
weakly disordered systems [3,4], quantum chaos [5] – as
well as by mathematicians [6]. During last year [4], a com-
pact form for the determinant of the operator (−∆ + γ)
has been obtained (γ is a constant). More recently [7],
this result has been generalized to the operator (H + γ),
with H = −∆+ V (x). V (x) is some potential defined in
each point x of the graph. Both approaches relied on the
construction of the Green’s function on the graph. In this
letter, we propose to recover this last result [7] by using a
quite different way based on Path Integrals [8] and Time-
Dependent Harmonic Oscillator (TDHO) properties [9].

To introduce those results, we consider a graph G made
of V vertices linked by B bonds. Let us define, on each
bond (αβ), of length lαβ, the coordinate xαβ that runs
from 0 (vertex α) to lαβ (vertex β). (Conversely, xβα ≡
lαβ−xαβ .) To avoid cumbersome notations, φ being some
function defined on the graph, we will simply write, when
it is not ambiguous, φ(α) for φ(xαβ=0) and

∫ β
α
φ for∫ lαβ

0 φ(xαβ)dxαβ .
The spectrum of H is determined by imposing conti-

nuity of the eigenfunctions ϕ and current conservation at
each vertex α, namely:

mα∑
i=1

dϕ(xαβi)
dxαβi

∣∣∣∣
xαβi=0

= 0 (1)
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(the summation is taken over the mα nearest vertices
of α).

In the sequel, we will consider, for each bond, two
independent solutions, ψαβ and ψβα, of the equation

(H + γ)ψ = 0. (2)

Those functions are chosen to satisfy:

ψαβ(α) = 1; ψαβ(β) = 0 (3)
ψβα(α) = 0; ψβα(β) = 1 (4)

with the wronskian:

Wαβ ≡ ψαβ
dψβα
dxαβ

− ψβα
dψαβ
dxαβ

=
dψβα
dxαβ

(α)

= −dψαβ
dxαβ

(β) =
dψαβ
dxβα

(β). (5)

Let us first recall the result of [4]. The authors established
that:

det(−∆+ γ) = γ
V−B

2

∏
(αβ)

sinh(
√

(γ) lαβ) det(M0) (6)

where M0 is a (V × V ) matrix with the elements:

M0
αα =

mα∑
i=1

coth(
√
γ lαβi) (7)

M0
αβ = − 1

sinh(
√
γ lαβ)

if (αβ) is a bond

= 0 otherwise (8)

(the summation is taken over the mα nearest vertices
of α).
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In fact, the authors also considered the case when a
magnetic field is added to the system. This point will be
discussed at the end of the paper.

In [7], we showed that:

det(H + γ) ≡ det(−∆+ V (x) + γ)

=
∏
(αβ)

1
dψβα
dxαβ

(α)
det(M) (9)

with the (V × V ) matrix M :

Mαα =
mα∑
i=1

dψαβi
dxαβi

(α) (10)

Mαβ = Mβα =
dψβα
dxαβ

(α) = Wαβ if (αβ) is a bond

= 0 otherwise (11)

(all the ψ functions appearing in (9-11) satisfy (2-4)).
When V (x) ≡ 0, (9-11) narrow down to (6-8). (This is

actually true, up to an irrelevant multiplicative constant).
(9), like (6), was established by computing the Green’s

function G(x, y) on the graph and using the relationship:∫
Graph

G(x, x)dx = ∂γ ln det(H + γ). (12)

In the present work, we will follow quite another way
essentially based on a path integral formulation [8] of
the spectral determinant S(γ). In this formalism, S(γ)−1

writes:

S(γ)−1≡det(H+γ)−1 =
∫
φ on graph

DφDφ̄e−
1
2

R
graph φ̄(H+γ)φ

(13)

where φ is a complex field defined on the graph G. The
path integral is performed over all the fields satisfying
the boundary conditions (1). General properties of path
integrals lead to (dx ≡ d

dx):

S(γ)−1 =
∫ ∏

vertices α

dφαdφ̄α

×
∏

bonds
(αβ)

∫ φ(lαβ)=φβ

φ(0)=φα

DφDφ̄ e−
1
2

R lαβ
0 dx φ̄(x)(−d2

x+V (x)+γ)φ(x)

(14)

where dφdφ̄ = d Reφd Imφ. This involves, after an inte-
gration by parts, the following quantity

∏
(αβ)

∫ φβ

φα

DφDφ̄ e
1
2 φ̄dxφ

∣∣lαβ
0 e−

1
2

R lαβ
0 dx (|dxφ|2+(V (x)+γ)|φ|2)

= exp
(
−1

2

V∑
α=1

φ̄α

mα∑
i=1

dxαβiφ(xαβi = 0)
) ∏

(αβ)

×
∫ φβ

φα

DφDφ̄ e−
1
2

R lαβ
0 dx (|dxφ|2+(V (x)+γ)|φ|2). (15)

With equation (1), the boundary terms vanish and we
are left with a product of propagators of two-dimensional
Time-Dependent Harmonic Oscillators. On the bond
(αβ), the coordinate xαβ is the “time” and the frequency
is ω(xαβ) =

√
V (xαβ) + γ. Let us recall the expression of

this propagator in standard notations [9]:

K(rb, tb; ra; ta) ≡
∫ rb

ra

Dr(τ)e−
1
2

R tb
ta

(ṙ(τ)2+ω(τ)2r2)dτ (16)

=
C

2π
exp

(
1
2

(Ar2
a +Br2

b + 2Cra · rb)
)
(17)

with (sa ≡ s(ta), ṡa ≡ d
dts(t = ta), . . . ):

A =
ṡa
sa

+ ḟa coth(fa − fb) (18)

B = − ṡb
sb

+ ḟb coth(fa − fb) (19)

C =

√
ḟaḟb

sinh2(fa − fb)
· (20)

The functions s(t) and f(t) obey the differential equations:

s̈+
c2

s3
− ω(t)2s = 0 (21)

ḟ s2 = c (22)

where c is an arbitrary (nonzero) constant. From the above
equations, it is easy to show that the functions ψ±(t) =
s(t)e±f(t) are two independent solutions of the equation:

ψ̈ − ω(t)2ψ = 0. (23)

Introducing two other solutions ψ1,2 of (23) that satisfy
the conditions:

ψ1(ta) = 1; ψ1(tb) = 0 (24)
ψ2(ta) = 0; ψ2(tb) = 1 (25)

and expressing ψ1,2 in terms of ψ±, we get for the con-
stants A, B, C in (17) the following simple form:

A = ψ̇1(ta) (26)

B = −ψ̇2(tb) (27)

C = ψ̇2(ta) = −ψ̇1(tb). (28)

Moreover, it can be established (for instance, step by step;
the proof is not difficult but rather lengthy) that, if ω(t)
is real, ψ1(t) (ψ2(t)) are monotonic deceasing (increasing)
functions for ta ≤ t ≤ tb and also that ψ̇2(ta)ψ̇1(tb) −
ψ̇1(ta)ψ̇2(tb) > 0.

Now, it is a simple matter to come back to our
computation of S(γ). Considering for each bond (αβ)
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the functions ψαβ and ψβα defined in equations (2-4), we
can express (15) as:

∏
(αβ)

1
2π

dψβα
dxαβ

(α) exp

1
2

∑
α,β

φ̄αMαβ φβ

 (29)

with the matrix M defined in (10, 11). Finally, Gaussian
integration leads to (9) – up to an inessential normaliza-
tion constant.

Adding a magnetic field [4,8], we must replace all the
derivatives appearing in the Laplacian and also in the cur-
rent conservation condition (1) by covariant derivatives
Dx = dx − iA(x) (A(x) is the vector potential). For in-
stance, (1) becomes

mα∑
i=1

Dxαβi
ϕ(xαβi = 0) = 0 (30)

Computing the spectral determinant along the same
lines (13 -15) as before we get, for (15), a product of terms
of the form∫ φβ

φα

DφDφ̄ e−
1
2

R
β
α

(|Dxφ|2+(V (x)+γ)|φ|2) (31)

(in the integration by parts, the boundary terms still van-
ish because of (30)). For each bond (αβ) one may recover
the propagator of a TDHO by performing the following
gauge transformation

φ(x) = φ̃(x)ei
R x
x0

A(x′) (32)

where the integral is performed along (αβ) and x0 is an
arbitrary point on this bond.

Let us define

θβα =
∫ β

α

A(x) (33)

(θβα = −θαβ) and choose x0 such that∫ β

x0

A(x) = −
∫ α

x0

A(x) =
1
2
θβα.

Then, (31) becomes∫ φβe−iθβα/2

φαe−iθαβ/2
Dφ̃D¯̃

φ e−
1
2

R β
α

(|dxφ̃|2+(V (x)+γ)|φ̃|2).

Considering the bounds of this integral, the quantity
φ̄αMαβφβ appearing in (29) must be changed into

φ̄αe+iθαβ/2Mαβ φβe−iθβα/2. (34)

The final result is that (9) still holds provided the off-
diagonal elements of the matrix M in (11) are slightly
modified:

Mαβ −→Mαβ e+iθαβ . (35)

Such a modification for the matrix M0 was already ob-
tained in [4].

Let us now study what happens when we replace cur-
rent conservation (1) by generalized boundary conditions

mα∑
i=1

dxαβiϕ(xαβi = 0) = λαϕ(α). (36)

The boundary contribution in (15) will not
vanish but rather produce an additional term
exp(−

∑V
α=1 λα|φα|2/2). Thus, (9) is still correct if, this

time, we change the diagonal elements (10) of M :

Mαα −→Mαα − λα. (37)

Finally, let us discuss the case when the potential con-
tains repulsive δ peaks. In fact, it is enough to consider
only one such peak located at some point c on the link
(ab): V (x) ≡ V1(x) + λcδ(x − c) where V1(x) is regular
(H ≡ H1+λcδ(x−c)). The generalization to several peaks
is straightforward.

The path integral for the bond (ab) becomes:∫ φb

φa

DφDφ̄ e−
1
2

R b
a
φ̄(H+γ)φ

=
∫ φb

φa

DφDφ̄ e−
1
2

R b
a
φ̄(H1+γ)φe−

1
2

R b
a
φ̄λcδ(x−c)φ (38)

=
∫

dφcdφ̄ce−
1
2λc|φc|

2
∫ φc

φa

DφDφ̄ e−
1
2

R c
a
φ̄(H1+γ)φ

×
∫ φb

φc

DφDφ̄ e−
1
2

R b
c
φ̄(H1+γ)φ (39)

We conclude that we must compute the spectral de-
terminant on the new graph consisting in (V + 1) vertices
(including c) and (B + 1) bonds ((ab) is replaced by (ac)
and (cb)). Moreover, in c, we have to consider generalized
boundary conditions.

I acknowledge Pr A. Comtet and Dr C. Texier for discussions.
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